Developing a C Program: Some Guidelines |451
15.6 PROGRAM EFFICIENCY

Two critical resources of a computer system are execution time and memory. The efficiency of a
program is measured in terms of these two resources. Efficiency can be improved with good design
and coding practices.

Execution Time

The execution time is directly tied to the efficiency of the algorithm selected. However, certain cod-
ing techniques can considerably improve the execution efficiency. The following are some of the
techniques, which could be applied while coding the program.
1. Select the fastest algorithm possible.
Simplify arithmetic and logical expressions.
Use fast arithmetic operations, whenever possible.
Carefully evaluate loops to avoid any unnecessary calculations within the loops.
If possible, avoid the use of multi-dimensional arrays.
6. Use pointers for handling arrays and strings.
However, remember the following, while attempting to improve efficiency.
1. Analyse the algorithm and various parts of the program before attempting any efficiency
changes.
2. Make it work before making it faster.
. Keep it right while trying to make it faster.
4. Do not sacrifice clarity for efficiency.

W

Memory Requirement

Memory restrictions in the microcomputer environment is a real concern to the programmer. It is
therefore desirable to take all necessary steps to compress memory requirements.
1. Keep the program simple. This is the key to memory efficiency.
Use an algorithm that is simple and requires less steps.
Declare arrays and strings with correct sizes.
When possible, limit the use of multi-dimensional arrays.
Try to evaluate and incorporate memory compression features available with the language.

REVIEW QUESTIONS

15.1 Discuss the various aspects of program design.
15.2 How does program design relate to program efficiency?
15.3 Readability is more important than efficiency, Comment.
15.4 Distinguish between the following:

a. Syntactic errors and semantic errors.

b. Run-time errors and logical errors.

¢. Run-time errors and latent errors.

452 | Programming in ANSI C

15.5

15.6

15.7

15.8

15.9

15.10

d. Debugging and testing.

e. Compiler testing and run-time testing.
A program has been compiled and linked successfully. When you run this program you face
one or more of the following situations.

a. Program is executed but no output.

b. It produces incorrect answers.

c. It does not stop running.
List five common programming mistakes. Write a small program containing these errors and
try to locate them with the help of computer.
In a program, two values are compared for convergence, using the statement

if((x-y) < 0.00001) ..

Does the statement contain any error? If yes, explain the error.
A program contains the following if statements:

.....

if(x>188y == 0)p
if(x == 5| p >

.....

Draw a flow chart to illustrate various logic paths for this segment of the program and list test
data cases that could be used to test the execution of every path shown.
Given below is a function to compute the yth power of an integer x.

power(int x, int y)
{
int p;
p =Y
while(y > 0)
X *=y =3
return(x);

}

This function contains some bugs. Write a test procedure to locate the errors with the help of
a computer.

A program reads three values from the terminal, representing the lengths of three sides of a
box namely length, width and height and prints a message stating whether the box is a cube,
rectangle, or semi-rectangle. Prepare sets of data that you feel would adequately test this
program.

Appendix

1. INTRODUCT! - i

One of the unique features of (language as compared to other high-level languages is that it allows
direct manipulation of individual bits within a word. Bit-level manipulations are used in setting a
particular bit or group of bits to 1 or 0. They are also used to perform certain numerical computations
faster. As pointed out in Chapter 3, C supports the following operators:

1. Bitwise logical operators.

2. Bitwise shift operators.

3. One’s complement operator.
All these operators work only on integer type operands.

2. BITWISE LOGICAL OPERATORS

There are three logical bitwise operators. They are:
e Bitwise AND (&)
e Bitwise OR (I)
® Birwise exclusive OR (*)
These are binary operators and require two integer-type operands. These operators work on their
operands bit by bit starting from the least significant (i.e. the rightmost) bit, setting each bit in the
result as shown in Table 1.

454 I Progralhming in ANSIC

Table 1 Result of Logical Bitwise Operations

opl

O O = =

Bitwise AND

op2 opl & op2 opl | op2 opl * op2
1 1 I 0
0 0 1 1
1 0 1 1
0 0 0 0

The bitwise AN} operator is represented by a single ampersand (&) and is surrounded on both sides
by integer exprespions. The result of ANDing operation is 1 if both the bits have a value of 1; other-

wise it is 0. Let ui

s consider two variables x and y whose values are 13 and 25. The binary represen-

tation of these twp variables are

If we execute statement

then the result wq

Although the 1
between the deci]

X - - => 0000 0000 0000 1101
y - - -> 0000 0000 0001 1001
Z=x8&Yy;

uld be:
z - - -> 0000 0000 0000 1001

bsulting bit pattern represents the decimal number 9, there is no apparent connection
mal values of these three variables.

Bitwise AND#ng is often used to test whether a particular bit is 1 or 0. For example, the following

program tests wh

ether the fourth bit of the variable flag is 1 or 0.

#define TEST 8 /* represents 00........ 01000 */
main()
{

int flag;

if((flag & TEST) != 0) /* test 4th bit */
{

}

\ printf(" Fourth bit is set \n");

Note that the bitwise logical operators have lower precedence than the relational operators and
therefore additional parentheses are necessary as shown above.

Appendix I I 455

The following program tests whether a given number is odd or even.

main()

{
int test = 1;
int number;

printf("Input a number \n");
scanf("%d", &number);

while (number 1= -1)

{
if(number & test)
print("Number is odd\n\n");
else
printf("Number is even\n\n");

printf("Input a number \n");
scanf("%d", &number);

}
Output

Input a number
20
Number is even

Input a number
9
Number is odd

Input a number
-1

Bitwise OR

The bitwise OR is represented by the symbol | (vertical bar) and is surrounded by two integer oper-
ands. The result of OR operation is 1 if at least one of the bits has a value of 1: otherwise it is zero.
Consider the variables x and y discussed above.

X = - => 0000 0000 0000 1101
y - - -> 0000 0000 0001 1001

xly - - -> 0000 0000 0001 1101

458 | Programming in ANSIC

1

x & mask;
x | mask;

y
y

Masking is used in many different ways.
¢ To decide bit pattern of an integer variable.
e To copy a portion of a given bit pattern to a new variable, while the remainder of the new
variable is filled with Os (using bitwise AND).
e To copy a portion of a given bit pattern to a new variable, while the remainder of the new
variable is filled with 1s (using bitwise OR).
e To copy a portion of a given bit pattern to a new variable, while the remainder of the original
bit pattern is inverted within the new variable (using bitwise exclusive OR).
The following function uses a mask to display the bit pattern of a variable.
void bit_pattern(int u)
{
int i, X, word;
unsigned mask;

mask = 1;
word = 8 * sizeof(int);
mask = mask << (word — 1);

/* shift 1 to the leftmost position */

for(i = 1; i<= word; i++)

{
x = (u & mask) 2 1 : 0; /* identify the bit */
printf("%d", x); /* print bit value */
mask >>= 1; /* shift mask by 11 position to right */

ASCII Values of Characters

Appendix

T

Note: The first 32 characters and the last character are control characters: they cannot be printed.

ASCH ASCII ASCII ASClI
Value Character Value Character Value Character Value Character
000 NUL 032 blank 064 @ 096 «—
001 SOH 033 ! 065 A 097 a
002 STX 034 * 066 B 098 b
003 ETX 035 # 067 C 099 c
004 EOT 036 $ 068 D 100 d
005 ENQ 037 Lz 069 E 101 e
006 ACK 038 & 070 F 102 f
007 BEL 039 ¢ 071 G 103 g
008 BS 040 (072 H 104 h
009 HT 041) 073 I 105 i
010 LF 042 * 074 J 106 j
011 vT 043 + 075 K 107 k
012 FF 044 s 076 L 108 1
013 CR 045 - 077 M 109 m
014 SO 046 . 078 N 110 n
015 SI 047 / 079 O 111 o
016 DLE 048 0 080 | 112 p
017 DCl1 049 1 081 Q 113 q
018 DC2 050 2 082 R 114 r
019 DC3 051 3 083 S 115 S
020 DC4 052 4 084 T 116 t
021 NAK 053 5 085 U 117 u
022 SYN 054 6 086 \% 118 v
023 ETB 055 7 087 A% 119 w
024 CAN 056 8 088 X 120 X
025 EM 057 9 089 Y 121 y
026 SUB 058. : 090 Z 122 z
027 ESC 059 ; 091 [123 {
028 FS 060 < 092 \ 124 I
029 GS 061 = 093] 125 }
030 RS 062 > 094 T 126 ~
031 uUs 063 ? 095 - 127 DEL

462 I Programming in ANSI C

Function Data type Task
returned
fmod(d1l,d2) double Return the remainder of d1/d2 (with same sign as d1).
labs(1) long int Return the absolute value of 1.
log(d) double Return the natural logarithm of d.
log10(d) double Return the logarithm (base 10) of d.
pow(d1,d2) double Return d1 raised to the d2 power.
sin(d) double Return the sine of d.
sinh(d) double Return the hyperbolic sine of d.
sqrt(d) double Return the square root of d.
tan(d) double Return the tangent of d.
tanh(d) double Return the hyperbolic tangent of d.
<stdio.h>
fclose(f) int Close file f. Return 0 if file is successfully closed.
feof(f) int Determine if an end-of-file condition has been reached. If so, return a
nonzero value; otherwise, return 0.
fgetc(f) int Enter a single character form file f.
fgets(s, i, f) char* Enter string s, containing i characters, from file f.
fopen(sl,s2) file* Open a file named s1 of type s2. Return a pointer to the file.
fprint(f,...) int Send data items to file f.
fputc(c.f) int Send a single character to file f.
fputs(s,f) int Send string s to file f.
fread(s,il,i2,f) int Enter i2 data items, each of size il bytes, from file f to string s.
fscanf(f,...) int Enter data items from file f
fseek(f,1,i) int Move the pointer for file f a distance 1 bytes from location i.
ftell(f) long int Return the current pointer position within file f.
fwrite(s,i1,i2,f) int Send i2 data items, each of size il bytes from string s to file f.
gete(f) int Enter a single character from file f.
getchar(void) int Enter a single character from the standard input device.
gets(s) char* Enter string s from the standard input device.
printf(...) int Send data items to the standard output device.
putc(c,f) int Send a single character to file f.
putchar(c) int Send a single character to the standard output device.
puts(s) int Send string s to the standard output device.
rewind(f) void Move the pointer to the beginning of file f.
scanf(...) int Enter data items from the standard input device.
<stdlib.h>
abs(i) int Return the absolute value of i.
atof(s) double Convert string s to a double-precision quantity.
atoi(s) int Convert string s to an integer.

atol(s) long Convert string s to a long integer.

Appendix HI | 463

Data type
returned

Task

calloc(ul,u?)

realloc(p, u)

stremp(s1, s2)

strempi(sl, s2)

strepy(sl, s2)

void*

void

void
void*

int
void*

void
int

int

int

char*

int
char*

difftime(11,12) double

long int

- Allocate memory for an array having ul elements, each of length u2

bytes. Return a pointer to the beginning of the allocated space.
Close all files and buffers, and terminate the program. (Value of u is
assigned by the function, to indicate termination status).

Free a block of allocated memory whose beginning is indicated by p.
Allocate u bytes of memory. Return a pointer to the beginning of the
allocated space.

Return a random positive integer.

Allocate u bytes of new memory to the pointer variable p. Return a
pointer to the beginning of the new memory space.

Initialize the random number generator.

Pass command string s to the operating system. Return 0 if the com-
mand is successfully executed; otherwise, return a nonzero value typi-
cally —1.

Compare two strings lexicographically. Return a negative value if
sl<s2; 0 if s1 and s2 are identical; and a positive value if s1>s2.
Compare two strings lexicographically, without regard to case. Re-
turn a negative value if s1<s2; 0 if s1 and s2 are identical; and a value
of s1 > s2.

Copy string s2 to string s1.

Return the number of characters in string s.

Setall characters within s to c(excluding the terminating null charac-
ter \0).

Return the time difference 11 ~ 12, where 11 and 12 represent elapsed
time beyond a designated base time (see the time function).
Return the number of seconds elapsed beyond a designated base time.

466' Programming in ANSI C

74
75
76
77
78

79
80
81
82

83

84
85
86
87

88
89
90
91
92
93
94
95

96 -

97
98
99
100
101
102
103

104
105
106
107
108
109
110
111
112
113
114

115

printf("Enter Room Number[%3d]: *,i+1);
gets(iroom);

if (iroom[0] == '\0') /* user hits enter - quits */

{ gotoxy(1,25);
cprintf("You chose to quit: Entry %d was not added to the
database.",i+l); ‘

getch();
break;
) .
printf("Enter Phone Number[%3d]: ",i+1);
gets(iphone); ‘
if (iphone[0] == '\0') /* user hits enter - quits */

{ gotoxy(1,25);
cprintf("You chose to quit: Entry %d was not added to the

database.",i+1);
getch();
break;
)

/* check the string for valid inputs */
error_iroom = chkstrdig(iroom,4);
error_iphone = chkstrdig(iphone,8);

/* loop's while room input error (out of range/character) */

{if
{

while(error_iroom != 0)

(error_iroom == -1)
clrser();

refreshscreen();
drawscreen();

gotoxy(1,4);

printf(">> Add Entry <<");
gotoxy(1,25);
cprintf("Error: Room Number

than 4 digits. ");

- out of Range, Your entry was greater

gotoxy(1,6);

printf("Renter Room Number[%3d]: ",i+1);
gets{iroom);

(error_iroom == -2)

clrscr();

refreshscreen();
drawscreen();

gotoxy(1,4);

printf("*** Add Entry ***");
gotoxy(1,25);
cprintf("Error: Room Number

- Character(s) detected, character(s)

Appendix IV I 467

116 are not allowed.");

117 gotoxy(1,6);

118 printf("Renter Room Number[%3d]: ",i+1);
119 gets(iroom);

120 }/* checks string room input if valid */

121 error_iroom = chkstrdig(iroom,4);

122 }/*100p's while phone input error (out of range/character) */
123 while(error_iphone !=0)

124 {if (error_iphone == -1)

125 { clrscr();

126 refreshscreen();

127 drawscreen();

128 gotoxy(1,4);

129 printf(">> Add Entry <<");

130 gotoxy(1,25);

cprintf("Error: Phone Number - out of Range, Your entry was greater
131 than 8 digits. ");

132 gotoxy(1,6);

133 printf(“Room Number[%3d] Entry: %s",i+l,iroom);
134 gotoxy(1,7); '
135 printf(“Renter Phone Number[%3d]: ",i+l);

136 gets(iphone);

137 }

138 if (error_iphone == -2)

139 { clrser();

140 refreshscreen();

141 drawscreen();

142 gotoxy(1,4);

143 printf(">> Add Entry <<");

144 gotoxy(1,25);

cprintf(“Error: Phone Number - Character(s) detected, character(s)
145 are not allowed."); .

146 gotoxy(1,6);

147 printf("Room Number[%3d] Entry: %s",i+1,iroom);

148 gotoxy(1,7);

149 printf("Renter Phone Number[%3d]: ",i+l);

150 gets(iphone);

151 }/* checks phone input valid */

152 . error_iphone = chkstrdig(iphone,8);

153 }

154 /* no room or phone input error - addentry */

155 if (error_iroom == 0 && error_iphone == ()

156 { int_iroom = atoi(iroom); /* converts string to int */
157 tongint_iphone = atol (iphone); /* converts string to long int */
158 .current_e_add++;

159 AddEntry(int_iroom,longint_iphone);

470 Programming in ANSIC

cprintf("Successful: There are currently %d entries in the data

base,
248 ",add_count);
249 /* room_found is globe it counts room no. found in FindRoom
function */
250 cprintf(“found %d.",room_found);
251 getch();
252 }
253 if (room check == -1) /* return = -1 Room was not found */
254 { gotoxy(1,25);
255 cprintf("Error: The Room No. Your looking for was Not Found.");
256 getch();
257 }
258
259 }
260 else
261 if (option == '5') /* ListAll option */
262 { clrscr();
263 refreshscreen();
264 drawscreen();
265 gotoxy(1,4);
266 printf(">> ListAll <<\n\n");
267 '
268 list_check = ListAl1();
269
270 if (list_check == 0) /* return 0 if entries are in database */
271 { gotoxy(1,25);
272 cprintf("List Sucuessful”);
273 getch();
274 }
275 if (list_check == -1) /* return -1 - emptylist */
276 {
277 gotoxy(1,25);
278 cprintf("Empty List");
279 getch()y
280 }
281 }
282 else
283 if (option == '6') /* Getotalentries option */
284 { total _entries = GeTotalEntries();

285 gotoxy(1,25);
cprintf("There are currently %d entries stored in the
286 Database.",total_entries);
287 getch();
288 }
289 else

Appendix IV |471

290 if (option == '7') /* Sort Option */
291 { clrscr();
292 refreshscreen();
293 drawscreen();
294 gotoxy(1,4);
295 printf(">> Sort A1l Entries <<");
296 gotoxy(1,6);
297 printf("Press 'A' to sort database in [A]scending order");
298 gotoxy(1,7);
299 printf("Press 'D' to sort database in [D]escending order.");
300 gotoxy(1,9);
301 printf("Note: Database is sorted by phone no. entries.");
302 sortopt = getch();
303 flushall();
304
305 - sort_check = SortAllEntries(sortopt);
306 getch(); '
307 if (sort_check == 0) /* return = 0 - entries, in db & was sorted */
308 { gotoxy(1,25);
cprintf("Database was successfully Sorted.
309 ");
310 getch();
311 }
312 if (sort_check == -1) /* return = -1 - if db is empty */
313 { gotoxy(1,25);
314 cprintf("Database was not sorted - Database is empty!");
315 getch();
316 }
317 }
318 else
319 if (option == '8') /* Load Database from file option */
320 { clrscr(); .
321 refreshscreen();
322 drawscreen();
323 gotoxy(1,4);
324 printf(">> Load Database <<");
325 "LoadDB();
326 }
327 else
328 if (option == '9') /* exit option */
329 { gotoxy(1,25);

cprintf("Do you really want to exit?, Press 'Y' to confirm, anykey to
330 cancel®);
331 ‘exit_opt = getch();
332 flushall();
333 if (exit_opt == 'y' || exit_opt == 'Y')

474| Programming in ANSI C

406 } :
407 if (add_count !=0) /* if database is not empty process with delete */
408 {/* keeps looping while move up position is not = to deleted entry */
409 for (x=0; x < del_entry; x++)
410 { for (k=0; k < add_count; k++)
411 {/* When -1 is found it moves everything by one */
412 if (room[k] == -1 8& phone[k] == -1)
413 { 1loop_mov_stop=0;
414 loop_mov =0;
415 count_del++;
416 /* loop _mov_stop calculates moves needed */
417 Toop_mov_stop = add_count-(k+1);
418 while (loop_mov_stop != loop_mov)
419 { room[k+1oop_mov] = room[(k+1)+1oop_mov];
420 phone[k+1oop_mov] = phone[(k+1)+loop_mov];
421 Toop_mov++; /* counter for move */
422 }
423 }
424 }
425 }
426 }
427 /* Calcalates total entry */
428 add_count = add_count - del_entry;
429
430 if (del_found_flag == 0) /* flag is 0 when delete entry input was found
%*
/
431 { return(0); } /* return sucessful */
432 Else
433 { return(-1); } /* return not found */
434 |}

Let’s take a closer look at how the DeleteEntry function works. To make things easier let,
Room =1,2,3,4,5,6,7,8,9,10
Phone=1,2,3,4,5,6,7,8,9,10

Ten entries in the database with the digits from 1 to 10 both having the same values entered. Now if
the user requests Room/Phorie “4” to be deleted, the delete entry function will find the digit “4” in both
Room and Phone matching the user’s request.

Find -> is done within a for loop until add_count number is reached, Add_count is the counter for the
number of entries added (Line 385). If it finds the digit ‘4’ it asks the user if he/she wants to delete the
current entry in the record.

This is what happens when the user selects ‘Yes’,
1) Copy that current entry to a temp location (Lines 397, 399).
2) Thena ‘-1’ is copied on top of the location where digit ‘4> was found overwriting it (marking it
has been deleted) (Lines 398, 400). Tot_del_entry and del_entry is incremented by one each time
this is done (Lines 401,402).

Appendix IV l 475

3) Another for loop is nested within the for, used to find “-1’s’ marked for deleted, it loops for the

no. of entries that has been deleted (Lines 409, 412). Calculation of the move up stop position is
done on line 417.

4) Then using the while loop (Line 418) everything is moved up by one position. At the end of the

435
436
437
438
439
440
441
442
443
444
445
446
447
448

449
450
451
452
453

454
455
456
457
458
459
460

461

462
463
464
465
466
467
468
469
470
471
472

while loop (Line 428), the number of records that exist after deletion has been done is calculated.

Used to search for a phone number in the database.

Returns 0 if phone no. was found.
Returns -1 if phone no. is not found.

int FindPhone(long int p)
{
int k, phone_found_ flag= -1;
gotoxy(1,8);
for(k=0; k < add_count; k++)
{ if (add_count != 0) /* if database is not empty then run a search */

{ if (k '= 0 && (k%15) == 0)
{ gotoxy(1,8); /* moves cursor to beginning when screen filled */
getch();
}
if (p == phone[k])
{ printf("Phone No. [%-81d] was found in record No. [%3d]\tRoom No.
[%-4d]\n",phone[k],k+1,room[k]);
phone_found++;
phone_found_flag = 0;
}
}
}
if (phone_found_flag == 0) /* flag is 0 if record was found */
{ return(0); } /* return sucessful */
else
{ return(-1); } /* return not found */

Used to search for a Room number in the database.

Returns 0 if room no. was found.
Returns -1 if room no. is not found.

478' Programming in ANSI C

553 add_count -1))
{ phone_str_tmp = phone[k]; /* stores previous array to
554 phone_str_tmp */
phone[k] = phone[k + 1]; /* copys next array to the previous
555 array before it */
phone[k + 1] = phone_str_tmp; /* Previous array is copyed to. next
556 array */

557 . /* same process is done here but with room no. */

558 room str_tmp = room[k];

559 roomfk] = room[k + 1];

560 room{k + 1] = room_str_tmp;

561 sortalldone =1; /* sets to 1 if sort is done */

562 }

563 /* same method used here but sorts in decending order */

if ({phone[k] < phonel[k + 1])&&(sel == 'd' || sel == 'D')&&(k !=
564 add _count -1))

565 { phone_str_tmp = phone[k];

566 phone[k] = phone[k + 1];

567 phone[k + 1] = phone_str_tmp;

568 room_str_tmp = room[k];

569 room[k] = room[k + 1];

570 room[k + 1] = room_str_tmp;

571 sortalldone =1;

572 }

573 }

574 }while (sortalldone);

575 }

576

577 if ((sel == 'a' || sel == 'A')&&add _count !=0)

578 { gotoxy(1,25);

579 printf("You have chosen to sort the database in [A]scending order. ");
580 return(0); /* sucessfully sorted */

581 }

582 else

583 if ((sel == 'd' || sel == 'D')&&add_count !=0)

584 { gotoxy(1,25);

585 printf("You have chosen to sort the database in [D]ecending order. ");
586 return(0); /* sucessfully sorted */

587 }

588 else

589 if ((sel != 'a' || sel t= 'A' || sel !='d' || sel != 'D')&&add count !=0)
590 { gotoxy(1,12);

591 printf{"Invalid option - database was not sorted!");

592 }

593 else

594 { return(-1); } /* list empty */

595 !

